إستمرارية مقياس الحد والرواسم شبه الامتثالية التوافقية على كرة الوحدة في الفضاء \mathbb{R}^n

د. علي الحراري عبعوب / د. ايو عجيلة سالم شخيم كلية العلوم صبراتة _ جامعة صبراتة

الملخص:

ما ω الخاصية majorant ما ω الخاصية $|f(x)-f(y)|\leq \omega(|x-y|)\;;\;\;x,y\in\partial\mathbb{B}$ حيث $f:\overline{\mathbb{B}}\to\mathbb{R}^n$ تكون راسم شبه امتثالي توافقي مستمر في كرة الوحدة

حيث $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ تكون راسم شبه امتثالي توافقي مستمر في كرة الوحدة \mathbb{R} تؤدي الى الخاصية المقابلة

$$|f(x)-f(y)| \le C \omega(|x-y|)$$
 , $x,y \in \mathbb{B}$. diam(\mathbb{B}) و $K(f)$ و n و كل من $K(f)$ و $K(f)$ هنا $K(f)$ و كل من $K(f)$ و كل من $K(f)$ و $K(f)$

BOUNDARY MODULUS OF CONTINUITY AND HARMONIC QUASICONFORMAL MAPPINGS ON THE UNIT BALL IN \mathbb{R}^n

Abstract.

In this paper, we prove that for some majorant ω , the property

$$|f(x) - f(y)| \le \omega(|x - y|); \quad x, y \in \partial \mathbb{B}$$

where $f : \overline{\mathbb{B}} \to \mathbb{R}^n$ is a continuous mapping which is harmonic quasiconformal in \mathbb{B} implies the corresponding

property

$$|f(x)-f(y)| \leq C \, \omega(|x-y|) \,, \ x,y \, \in \, \mathbb{B}.$$

Here C is a constant depends only on n; K(f); and diam(\mathbb{B})

1. Introduction

Let $\mathbb{B} = \{x \in \mathbb{R}^n : |x| < 1\}$ be open unit ball in \mathbb{R}^n ; n > 2, and $\partial \mathbb{B}$ be the boundary of \mathbb{B} . Harmonic quasiregular (briey, hqr) mappings in the plane were studied first by O.

د.علي الحراري عبعوب / د.ايوعجيلة سالم شخيم

Martio in [8], for a review of this subject and further results see [9] and references cited there. Moduli of continuity of harmonic quasiregular mappings in \mathbb{B}^n were studied by several authors; see [7], [6], [3], Moduli of continuity of harmonic quasiregular mapping on bounded domain was studied by A. Abaoub, A. Shkheam, M. Arsenović, and M. Mateljević in [2]. We consider majorization results for function f that is quasiconformal in unit ball \mathbb{B} of the Euclidean n-space \mathbb{R}^n , where $n \geq 2$. If $\omega: [0, +\infty) \to [0, +\infty)$ nondecreasing function defined for $t \geq 0$ satisfies the condition

Ky words: Lipschitz-type space, Harmonic mappings, Quasiconformal mappings.

$$\omega(A t) \le A \omega(t) \text{ for all } t \ge 0,$$
 (1)

for some fixed A > 1, we say that ω is majorant. More general,

a subadditive function ω satisfies (1) whenever A is a positive integer. Note that we may have $\omega(0) > 0$, and that ω need not be continuous. We remark that if (1) holds, then

$$\omega(ALt) \le AL\omega(t)$$
 for all $t \ge 0$; and $L \ge 1$ (2)

In matters regarding notation and terminology we will conform to the usage in the book of Väisälä. In particular, $f: \mathbb{B} \to \mathbb{R}^n$ is quasic--onformal, $K_I = K_I(f)$ denotes the inner dilatation of f, $K_O = K_O(f)$ denotes the outer dilatation of f, and K(f) designate the maximal dilatation of f.

2. Auxiliary Result.

The following result is contained in theorem 4 (see [1]).

Lemma 1.

Let $f: \mathbb{B} \to \mathbb{R}^n$ is a continuous mapping which is quasiconformal in \mathbb{B} and satisfies

$$|f(x) - f(y)| \le \omega(|x - y|); \tag{3}$$

for all x; $y \in \partial \mathbb{B}$, and for some majorant ω . Then

$$|f(x) - f(y)| \le C\omega(|x - y|); \tag{4}$$

for all $x \in \partial \mathbb{B}$, and all $y \in \mathbb{B}$, where C is a constant depending only on n; K(f), and diam(\mathbb{B}).

The following was proved in [5].

Lemma 2.

Let Ω be a bounded open subset of \mathbb{R}^n . Assume that f be a continuous mapping on $\overline{\Omega}$, and harmonic in Ω . If for each $x_0 \in \partial \Omega$

$$\sup_{\mathbb{B}(x_0,\rho)\cap\Omega} |f(x)-f(x_0)| \leq \gamma(\rho), \quad \text{for } \rho \leq \rho_0$$
 (5). Then for x ; $y \in \Omega$,
$$|f(x)-f(y)| \leq \gamma (|x-y|); \text{ whenever } |x-y| \leq \rho_0$$
 (6).

3. Main Result

In this section, we will prove the main result in this paper.

Theorem 1.

Let $f : \mathbb{B} \to \mathbb{R}^n$ be a continuous mapping which is harmonic quasiconformal in \mathbb{B} . If

$$|f(x) - f(y)| \le \omega(|x - y|) \tag{7}$$

for all x; $y \in \partial \mathbb{B}$, and for some majorant ω . Then

$$|f(x) - f(y)| \le C\omega(|x - y|)$$
(8)

المتمرارية مقياس الحد والرواسم شبه الامتثالية التوافقية على كرة الوحدة في الفضاء \mathbb{R}^n

د.علي الحراري عبعوب / د.ايوعجيلة سالم شخيم

for all $x, y \in \mathbb{B}$.

Proof.

By Lemma (1), estimate (8) holds for all $x \in \partial \mathbb{B}$ and all $y \in \mathbb{B}$. Using lemma (2), we deduced that the same estimate is valid for all x; $y \in \mathbb{B}$.

المتمرارية مقياس الحد والرواسم شبه الامتثالية التوافقية على كرة الوحدة في الفضاء \mathbb{R}^n

د.علي الحراري عبعوب / د.ايوعجيلة سالم شخيم

References.

- [1] Hinkkanen, A. Näkka, R.: Analytic functions and quasiconformal mappings in stolz angles and cones, complex variable Theory appl. vol. 13, . 251- 267. (1990).
- [2] A. Abaoub, A. Shkheam, M. Arsenović, M. Mateljević, and M: *Moduli of Continuity of Harmonic Quasiregular Mappings in bounded domain*, Ann. Acad. Sci. Fenn. Math. V(38), 839-847 (2013).
- [3] Arsenović, M., Kojić, V., Mateljević, M.: On Lipschitz continuity of harmonic quasiregular; maps on the unit ball in \mathbb{R}^n , Ann. Acad. Sci. Fenn. Math. 33, 315-318 (2008).
- [4] Arsenović, M., Manojlović, V., Näkka, R.: *Boundary modulus of continuity and quasiconformal mappings*, Ann. Acad. Sci. Fenn. Math. 37, (2012), 107118.
- [5] Caffarelli, L.A., Kinderlehrer, D.: *Potential methods in variational inequalities*, J. Anal. Math. 37, (1980) 285-295.
- [6] Kalaj, D.: Lipschitz spaces and harmonic mappings, Ann. Acad. Sci. Fenn. Math. 34, 475-485,(2009).
- [7] Kojić, V., Pavlović, M.: Subharmonicity of $|f|^p$ for quasiregular harmonic functions with applications, J. Math. Anal. Appl. 342, 742-746 (2008).
- [8] Martio, O.: *On harmonic quasiconformal mappings*, Ann. Acad. Sci. Fenn., A 1, 425, 3-10(1968).
- [9] Mateljević, M.: *Quasiconformality of harmonic mappings between Jordan domains*, Filomat 26:3 (2012), 479-510.